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Algorithms for solving the inverse problem of determining the relative phase permeability (RPP) functions data from unsteady 
laboratory investigations of samples of a porous medium are considered. It is proposed that "a priori" information on the form 
of the RPPs, obtained during the course of steady-state investigations of lithologieally similar samples of the porous medium, 
should be used to regularize this problem. Methods are developed for determining the optimal complexity of the relations which 
approximate the RPPs. Examples of the use of the proposed algorithms to solve a model problem and for processing real data 
are given. Copyright © 1996 Elsevier Science Ltd. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

The displacements of a fluid from a sample of a porous medium is described by the Buckley-Leverett 
equation 

ds , ds ./;(s) , ~=x  (1.1) 
-~-+f (s)~-~=O, f(s)= fi(s)+ltlofz('V) l 

where s is the saturation by the displacing agent, x is the dimensionless time, which is equal to the ratio 
of the volume of the displacing agent to the overall pore volume, x is a spatial coordinate, I is the sample 
length, f(s) is the derivative of the Buckley-Leverett f u n c t i o n f ( s ) , f a ( s )  and f2(s) are the relative phase 
permeabilities (RPPs) of the displacing agent and the fluid, respectively and tto = ttl/tt2 is the ratio of 
their viscosities. 

The solution of Eq. (1.1) which satisfies the conditions s(0, x) = ST, S(~, 0) = Sc has the form [1] 

l v ( ~ / x ) ,  ~ < ~,.('0 
S=Ls,. ,  ~ >~,.(.c) 

where sc and sr are the initial and final saturation of the porous medium by the displacing agent, ~I' is 
a function which is the result of the inversion of the function f '  (s) in [s., ST], ~ = arc, x) = f ( s . )  is the 
velocity of motion of the front and s. is the saturation value at the displacement front, which is 
determined from the condition 

f (s.)  = (l(s.)  - ~ S c ) ) / ( s ,  - so) 

The dependence of the dimensionless pressure drop AP(x) on time is given by the expression 

~,p(~)=~ d~ ~, a~ I-~, 
"C>~'C.; A P ( x ) = ~ O ( s ( ~ , ~ r ) ) + .  , "~<X.  

o lXoF2 

where x.  = l / f  (s . )  is the dimensionless time after which the displacement front reaches the outlet from 
the sample (~ = 1) and F2 is the RPP of the displaced fluid when s = Sc. On changing to dimensionless 
variables, the quantity AP m = APk/( t t l lU),  where k is the permeability with respect to air, I is the sample 
length, x) is the filtration velocity and th is the viscosity of the displacing agent, is adopted as the pressure 
scale. The volume of the displaced fluid, divided by the pore volume, is represented as 
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"C 

Vz(X)=X, x<x . ;  Vz(x)=x.+[[1- f (s (1 , t ) ) ]d t  x>~'c, 
T~ 

The inverse problem of determining the RPPs fl(s) and f2(s) is formulated using measurements of 
the pressure drop AP°(xi) and the volume of the displaced fluid V°z(xi) (xi is the time of the ith 
measurement, i = 1 , . . . ,  M and M is the sample volume). 

It should be noted that the RPPs are determined most accurately using data obtained from steady- 
state investigations during the course of which the displacing agent and the displaced fluid penetrate 
into a sample of the porous medium in a definite proportion and, for each set of conditions, time is 
allowed for steady-state filtration to be established (that is, for the readings of the instruments which 
measure the pressure gradient and the saturation by water of the sample of the porous medium 
to stabilize). However, these measurements are very time consuming, which limits the number of 
samples which can be investigated. An estimate of the RPPs is therefore often carried out using 
data from unsteady-state investigations in accordance with the formulation considered above. However, 
the implementation of this method is complicated by the fact that RPPs are estimated indirectly, 
that is, by solving the corresponding inverse problem, which leads to instability. Below, we consider 
interference-suppressing algorithms for determining the relative phase permeability functions using 
data from unsteady-state investigations, based on the use of "a priori" information on the form of the 
RPPs. 

2. BASIS OF THE P A R A M E T R I Z A T I O N  OF THE RELATIVE 
PHASE P E R M E A B I L I T Y  FUNCTIONS USING DATA 

FROM STEADY-STATE INVESTIGATIONS 

To avoid instability when finding the functional dependences it is necessary to use regularizing 
algorithms [2] which ensure that the solution of the inverse problem of determining the RPPs is well 
posed. We know that parametrization of the required functions is one of the efficient methods of 
regularization. The relative phase permeability functions are therefore considered in the form [3] 

f t (s)= A~( S_S,  )N~, _ .  u2 
[ l - s , . )  f2(s)=A~/ ST-S ] - \ s  T - s  c )  

where the parameters A1, A2, N 1 and N2 are determined from the condition for the theoretical 
dependences to be as close as possible to the experimental ones. However, an analysis of steady-state 
investigations show that the form of the phase permeability curves often differs from that of a power 
curve. Furthermore, porous media with different physicoehemical properties can be characterized by 
RPP function curves of a completely different type. 

A well-fouhded parametrization of the RPP functions can be carried out if the form of the RPP 
functions, determined for lithologically similar samples of porous media by steady-state methods of 
investigation, is known from independent experiments or from the literature. This is based on the fact 
that the experimental dependences, obtained for different samples of porous media with similar 
physicochemical properties, can be represented in a certain universal form by changing to normalized 
coordinates, proposed for the first time by Collins 

S - -  S C 
X = ~ ,  Y i  = 

S T - -  S C 

fAs) 
F, 

where F] and F2 are the RPP functions of the displacing agent and the displaced fluid when s = sT and 
s = Sc, respectively. In this system of coordinates, the RPP functions measured for different (but 
lithologically similar) samples fall on unique universal curves, the analytic expressions for which are 
sought in the form Yi = Fi(x, P), where p ~ R av are parameters which are determined using well-known 
methods for establishing experimental relationships, and N is the number of these parameters. 

As an example, we shall consider the RPP functions recorded while carrying out steady-state 
investigations on lithologically similar samples of porous media from the Priobskii deposit. Plots of these 
functions in normalized coordinates are shown in Fig. 1 (the open circles refer to the RPP function of 
a sample for which sc = 0.298 and sr = 0.695, while the solid circles refer to the RPP function of a 
sample with sc = 0.4 and ST = 0.707). It can be seen that the experimental points do, in fact, fall on the 
unique curves which can be represented in the analytic form 
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Fig. 1. 

Yl = xt"+l~x, Y2 = (1 - x) t'3÷p~` 

As a result of the instability of the inverse problem, the problem of reducing the complexity of the 
model (that is, the problem of reducing the number of parameters p which are determined using data 
from unsteady-state iawestigations) is important. In order to reduce the number of required parameters, 
standard values, that is, the values obtained in steady-state investigations of lithologically similar samples, 
can be assigned to some of them. In a number of cases, relations between parameters, which follow 
from the data obtained in steady-state experiments, can be used to simplify the model. 

Sometimes, displacement experiments are interrupted without waiting for the steady-state filtration 
conditions to become established. In this case the quantities sr and F1 are included among the unknown 
parameters and, in order to reduce the complexity of the model, some of the parameters p can be 
assigned values pe which are determined from the data of standard experiments. 

3. AN A L G O R I T H M  FOR SOLVING THE INVERSE PR OB L E M 

The solution of the inverse problem reduces to minimizing the residual 

Io(p) = ~ . [ o c ( A P ° ( x i  ) - A P ( z , ,  p))2 + ( v O ( x i )  _ V2(T. i  ' p))2 ] 
i 

with respect to the parameters p • R 'v. The functions AP(x) and V2(x) are found using the formulae 
derived in Section 1, ~ = (V'~/AP*) is a coefficient which takes account of the difference in the scales 
of variation and in the dimensions of the quantities 112 and AP, and V3 and AP* are their characteristic 
values. 

The minimum value of the residual is determined by the method of successive descent, and 
minimization with respect to each of the required parameters is carried out by the golden section method. 
In order to restrict file search region, a certain initial pointp0 (the first approximation) is chosen and 
the solution is sought within a small neighbourhood of this point. The point p0 can be found, in particular, 
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by the Monte-Carlo method, that is, by a random selection of points p from a certain domain and by 
comparing the values of the residual at these points. 

The optimal number of required parameters N can be found using the following two methods. 

The method of  structural minimization o f  the mean risk. The problem of the correct relation between 
the complexity of the model which is being identified and the amount and level of error in the available 
data can be solved using the method of structural minimization [4]. It is found that, if the solutions 
define a structure in a permissible set, then, together with minimization of the empirical risk (of the 
residual) within the elements of the structure, an additional possibility of minimization with respect to 
the elements of the structure appears. This enables one to find a solution which gives a deeper guaranteed 
minimum of the mean risk than a solution which yields the minimum value of the empirical risk in the 
whole permissible set of solutions. 

In the case under consideration, the structure is specified by the RPP parametrization set. We shall 
confine ourselves to the treatment of the following four models, the complexity of which is determined 
by the number of required parameters 

I) .ft(s)= Fix"', fz fs)  = Fzx "2 

2) f l ( s )= F1x t''+t'3x, fz(s) = Fz x1'2 

3) f j (s )= Fix"', f2fs) = Fzx "~-+"+' 

4) fl(s)= FIx t'+t'~a, J'2(s)= F2x p'-+t'4~ 

Estimates of the values of the parameters/5 in these models are determined using the initial choice 
of (AP°(xi), V~2(xi)), i = 1 . . . .  , M by minimizing the residual (the empirical risk functional) I0(p): 
t5 = arg infI0(p). 

The stability of the solution of the inverse problem is ensured by selecting the relations of optimal 
complexity from the four models which have been presented above. It has been shown [4] that, for each 
N, it is possible to construct, with a probability 1 - "q, an upper estimate of the mean risk of the form 

I (N)= Io(~)~(  N ,  Inq)M 

where the factor fZ determines the degree of correspondence between the complexity of the model (of 
the magnitude of N) and the volume of the sample M. As a rule, the magnitude of the first factor 
decreases as N increases, while the magnitude of the second factor increases. The method of regulated 
minimization of the mean risk involves finding the model which minimizes the estimate I(N). 

The estimate 

is used in practical calculations. 

Fuzzy constraints. The optimal complexity for a model can also be found by formalizing the vague 
aim of "making the residual as small as possible and the model as simple as possible" using methods 
from the theory of fuzzy sets [5, 6]. In particular, it may require the maximization of the criterion 

W = ((I - l.t,(]o)N)))(l - la,. (N))) ~ 

where ~ ( / )  and ~(N)  are membership functions of the "large residual" and "high complexity of the 
model" fuzzy sets which are defined as 

l r  "l r ~< I _ 10 I(2N / M)'-" 1 ~< N <~ M / 2 
' . r - - - :  Be(N)= 

B"(1) = [1, r > l  1, [1, N > M I 2  

where I(N) is the minimum value of the residual which is obtained by varying the N parameters p, 
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Ic = I(N1), where N1 is a certain initial number of parameters (N1 - 2, for example), and m 1 and m 2 
are exponents which determine the behaviour of the algorithm when there is a decrease in the residual 
and an increase in the complexity of the model (for instance, if m2 < 1, the model is acknowledged as 
being complex even for smallN, while, when m2 > 1, the number of parameters can be slightly increased). 

R E F E R E N C E S  

1. BARENBLATI" G. I., YENTOV V. M. and RYZHIK V. M., The Motion of Liquids and Gases in Natural Strata. Nedra, Moscow, 
1984. 

2. TIKHONOV A. N. and ARSENIN V. Ya., Methods of Solving Ill-posed Problems. Nauka, Moscow, 1986. 
3. KHALIMOV E. M., ]LEVI B. I., DZYUBA V. I. and PONOMAREV S. A., Technology for Increasing the Petroleum Yield from 

Deposits. Nedra, Moscow, 1984. 
4. VAPNIK V. N., GLAZKOVA T. G., KOSHCHEYEV T. A. et al.,Algorithms and Programs for Establishing Relationships (Edited 

by V. N. Vapnik). Nedra, Moscow, 1984. 
5. ZADE L., The Concept of a Linguistic Variable and its Application to Taking Approximate Decisions. Mir, Moscow, 1976. 
6. BELLMAN R. and 7_ADE L., Decision taking under vague conditions. In Problems of Analysis and Procedures for Taking 

Decisions. Mir, Moscow, 1976. 

Translated by E.L.S. 


